机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译
我们提出了两种小型无监督方法,用于消除文本中的毒性。我们的第一个方法结合了最近的两个想法:(1)使用小型条件语言模型的生成过程的指导和(2)使用释义模型进行风格传输。我们使用良好的令人措辞的令人愉快的释放器,由风格培训的语言模型引导,以保持文本内容并消除毒性。我们的第二种方法使用BERT用他们的非攻击性同义词取代毒性单词。我们通过使BERT替换具有可变数量的单词的屏蔽令牌来使该方法更灵活。最后,我们介绍了毒性去除任务的风格转移模型的第一个大规模比较研究。我们将模型与许多用于样式传输的方法进行比较。使用无监督的样式传输指标的组合以可参考方式评估该模型。两种方法都建议产生新的SOTA结果。
translated by 谷歌翻译